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Abstract

The Italian electricity sector undertook a deregulation process start-
ing in the 2004 that has led to overcome the system of vertically
integrated monopoly. This process led to the institution of Power
Exchange (IPEX). The transition had not been simple since the def-
inition of a proper market structure preserving competition is not an
immediate task. In this context, the information provided by demand
elasticity have to be exploited since the elasticity is strictly linked
with the market power measured on the supply side. The work want
to investigate what is the extent of buyer’s elasticity and if buyers can
change their consumption profiles within the day given the rational
expectation of change in price. The research use a Bayesian approach
applying a heteroskedastic SUR regression Model .
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1 The Italian Power Exchange

Electricity industry is a leading industrial sector since it is a fundamental
input for the production processes in any industrialised country. Its strate-
gic importance for economic development and its social and environmental
impact imposes an effective regulation. For this reason it is not surprising
that the electric sector was regulated by public commissions and the tariffs
were kept fixed over long periods of time.

In the last decades liberalization process started in most of the developed
countries, the ownership in the electricity sector became private and industry
has been split up into the different functions.

The liberalization of the electricity sector has led to overcome the sys-
tem of vertically integrated monopoly. Generation and retail functions have
become open to competition.

Transition from state-owned monopolies to competitive markets was not
always smooth and concerns had been raising in many countries; market
structure affects in fact competition and for this reason the design of dereg-
ulated electricity markets offer economists a changeling opportunity. They
have been attempting to design well functioning markets that gives play-
ers the correct incentives to improve production efficiency and limit market
power. In the recent years many economists have focused on the effects that
market design may have on equilibrium prices market power of supplier. The
market structure affects in fact the consumer reactivity to change in price,
that is the elasticity.

As in other international experiences, the creation of the Italian Electric-
ity market (IPEX) responded to two specific requirements:

e promoting competition in electricity generation, sale and purchase, un-
der criteria of neutrality, transparency and objectivity, through the creation
of a market place;

e ensuring the economic management of an adequate availability of an-
cillary services.

The organization and the management of the Italian electricity market
has been entrusted GME. Unlike other European markets, Italian Power Ex-
change is not a purely financial market aimed only to the definition of prices
and quantities, but it is a physical market where injection and withdrawal
profiles are scheduled and really delivered.

The Electricity Market is articulated in the Spot Electricity Market (MPE)
Forward Electricity Market and the Financial Derivatives Market (IDEX).
The Spot Electricity Market is divided into three submarkets:

The Day-Ahead Market (M GP), which is the venue for the trading
of electricity supply offers and demand bids for each hour of the next day.



All electricity operators may participate in the MGP. GME accepts Offers
and Bids by the merit order, taking into account the current transmission
constraints. Accepted supply offers are remunerated at the Zonal Clearing
Price, while accepted demand bids are remunerated at the National Single
Price (PUN). The accepted Offers/Bids determine the preliminary Injection
and Withdrawal Schedules of each Offer Point for the next day.

The Intra-Day Market (MI), which has replaced the existing Adjust-
ment Market, it is venue for the trading of electricity supply offers and de-
mand bids which modify the Injection and Withdrawal Schedules resulting
from the Day-Ahead Market. GME accepts the Offers and Bids submitted
into the MI by merit order, taking into account the Transmission Limits
remaining after the Day-Ahead Market. Accepted Offers and Bids are remu-
nerated at the Zonal Clearing Price and they Bids modify the preliminary
schedules determining the revised injection and withdrawal schedules for the
next day.

The Ancillary Services Market (MSD) is the venue for the trading of
supply offers and demand bids in respect of ancillary services. This market
is essentially used to acquire resources for relieving intra-zonal congestions,
procuring Reserve Capacity and balancing the injections and withdrawals in
the real time. Participation in the MSD is restricted to units that are autho-
rised to supply ancillary services and to their dispatching users. Participation
in the MSD is mandatory.

We focus on the Day-Ahead Market (MGP) where hourly blocks of elec-
tricity are traded for the next day are negotiated. In this market both the
injection and withdrawal programs for the next day are defined in order to
reach the equilibrium prices and quantities. The MGP is organized according
to an implicit double auction model and the most of the transactions takes
place in this market. The session opens at 8 a.m. on the ninth day before
the delivery-day and closes at 9.15 a.m. on the day before the delivery is
executed.

During the session, market participants submit offers to buy or sell that
indicate the amount of energy and the maximum price (or the lowest price)
at which they are willing to buy (or sell). In particular:

e The offers to buy (BID) represent the willingness to purchase an amount
of energy that does not exceed that specified in the offer at a price no
higher than that reported in the same offer.

e The offers to sell (OFF) express instead the willingness to sell an
amount of energy not greater than that specified in the offer and at
a price not lower than that indicated in the same offer. In the supply



side operators can relate offers only to the injection points. If the offer
is accepted, the producer undertakes to enter in the network, in a given
period, the amount of electricity specified in the offer.

Each offer, to sale and purchase, must be consistent with the physical
constraints of the corresponding unit point. The Day-Ahead Market is a
zonal market, reflecting the structure which the national transmission grid
is divided in. Each zone is characterized by an insufficient interconnection
capacity and when a congestion occurs the selling price is zonal differentiated:
selling price is lower in the upstream area of congestion and higher in the
downstream ones. In depth, when the market session closes, the GME starts
the process for the resolution of the market. For each hour of the next day,
the algorithm accepts all the bids and offers in order to maximize the value
of trading, within the limits of maximum transit between zones.

The process of acceptance can be summarized as follows:

All offers to sell are sorted according an ascending price order forming ag-
gregate supply curve,while bids are ordered by descending price order drawing
the aggregate demand curve.

The intersection between the two curves derives the total quantity traded,
the equilibrium price, the accepted BID and OFF.

If electricity flows resulting from the programs do not violate any tran-
sition constraints, the equilibrium price is unique for all the zones. The
accepted offers to sale are those whose sale prices are not higher than the
equilibrium price, while the accepted bids are those whose purchase prices is
not lower than the equilibrium price.

If at least one transmission constraint is violated, sale price are zonal
differentiated and the algorithm starts the so called ”Market Splitting Mech-
anism”. It splits in fact the market into two zones, one for the export, which
includes all zones upstream of the bond, and one for the import, which in-
cludes all areas downstream of the bond, repeating in each of the two areas
the process described above: i.e. it derives in each zone the corresponding
aggregate supply and demand curve. The outcome are two equilibrium zonal
price zone (p,, and p,,). In particular, p,, is greater in the area of import
and is smaller in the area of export. If, within each zone, the resulting equi-
librium quantities violate further transition constraints, the splitting market
process goes on within the zones in order to obtain an outcome consistent
with the grid constraints.

With regard to the purchase price of electricity, GME has implemented an
algorithm that, given congestion and differentiated zonal sale prices, apply
just a single national purchase price (PUN), that is the average of the zonal
sale prices weighted with the zonal consumptions. The PUN applies only to
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withdrawal points belonging to national geographical areas.
The mechanism of market splitting is an ”implicit auction” for the non-
discriminatory allocation of the transit rights.

2 Theoretical Background

Since the early 1970s, when energy caught the attention of policy makers in
the aftermath of the first oil crisis, research on energy demand has vastly
increased in order to overcome the limited understanding of the nature of
energy demand and demand response due to the presence of external shocks
encountered at that time.

Elasticity, in the energy demand analysis framework, is a feature that
has received particular attention in the studies of consumer preference and
willingness to pay, as in the institutional studies guiding policy decisions
as taxation and welfare. Moreover, the consumer reactivity to changes in
price can express market efficiency. Then, in strategic economic sectors, this
measure can be seen as a tool leading the National Regulators in the market
structure definition processes. Previous empirical studies used data referring
the supply side of electricity market, given the assumption of oligopolistic
market structure, they estimate demand elasticity using residual demand
function. Bigerna et al. (2014a)’s work has been the first Italian study of
electricity demand elasticity using data referring the demand side.

Following this approach, this work estimated demand elasticity using the
same type of data. The main participants in the Italian Electricity wholesale
Market are industrial consumers using power as an input in the production
function to produce goods and services, while residential consumers have a
domestic use of electricity. Industrial agents choose the amount of electricity
input which minimizes their cost function given the technological constraint,
while residential customers are part of optimizing utility function process
given the budget constraint. For this reason our econometric approach will lie
inside the neoclassical framework and will be grounded on rational optimizing
behaviour theory.

Although data available refers only market prices and demand, the duality
approach gives us a theoretical justification, allowing to legitimately switch
from agent’s preference (optimization theory) to market demand (The Mar-
shallian demand) in which quantities are functions of prices and total expen-
diture. We assume all the agent taking part in the MGP rationally behave
minimizing a cost function, (production cost function for industrial buyers
and expenditure function for the residential ones).

Recalling the tradition introduced by Brendt and Wood (Berndt and



Wood, 1975) the cost function assumed is the trans-log cost function, that is
the the second order approximation of an agent’s cost function. Its general
form can be written as follow:

InC= ay+> a;lnp; + %Zizj%j Inp;Inp; + agIn@
+%’YQQ(1I1 QP+, Yo, InQInp; (1)

where C'is the total cost, i and j are the inputs (for industrial consumers)
or the other good for residential customers, p; is the factor or good prices, )
is the objective variable (the objective variable to be maximized: it can be
the output quantity or the consumer’s utility)

This cost function must satisfies certain properties:

e Homogeneous of degree 1 in prices;

e Satisfying all the conditions guaranteeing a well-behaved production
(or utility) function

e Homothetic (separable function of the objective variable and prices).

Minimization problem is usually solved using Lagrangian techniques, lead-
ing to the first order condition:

M = hi(Q,p) = q; for all i (2)
Opi

Under the given assumptions, solving the problem yields to a demand
functions expressed in terms of prices and the objective variable: ¢; =
hi(Q,p). These functions are the Hicksian demands or the compensated de-
mand equations because they consider the objective variable () as a constant
parameter. For empirical works the optimization model need to be linked
to economical model in which quantities are a function of prices and total
expenditure. The duality approach is the theoretical framework allowing to
shift from the production possibility sets (and the system of preferences) to
the market demand function.

Given the convexity of production possibility sets (or convex preferences
for end consumers), the Roy Identity allows to derive Marshallian demand
from the Hicksian demand substituting the objective variable @) in the Hick-
sian demand with the profit function (or the indirect utility function).

First we derive the Minimum Expenditure function and we put it into
profit function or the indirect utility function V' (m, p), substituting m with
C(Q,p) evaluated at the optimum level. This lead to the trivial identity:
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V(C(Q,p),p) = Q(m,p) (3)

where Q(m, p) is the utility /profit function of the maximization problem, p
is the price vector and m is the budget constraint. This says that the indirect
profit /utility function V(C(Q, p), p), that minimizes the cost for achieving a
given level of utility given a set of prices, is equal to that utility function u (of
the maximization problem) evaluated at those prices . Taking the derivative
of both sides of this equation with respect to the price of a single input/good
p; (with the @’s level held constant) gives:

V(C(Q,p),p) 9C(Q,p)  V(C(Q,p).p)

Rearranging what we obtain is:
V(C(Q,p),
9~ Vicenn — i@ p)=gimp) (5)
Di — 5

The function g;(m.p) represents the Marshallian demand which expresses
quantity demanded for an input or good as a function of its own price, the
budget constraint and the price of all the other goods.

Given the Marshallian demand function of electricity the multidimen-
sional model need to be reduced into a two dimensional problem. For this
reason, all the other goods and inputs will be bundled in a numeraire good.
The numeraire is evaluated at a price proxied by the monthly consumer price
index (adjusted excluding from its computation the energy consumption).

3 The Statistical Model

With regard to the econometric method, the work used a Bayesian procedure,
whose application in electricity demand analysis represents a novel approach.

Until recently, the Bayesian approach has been in a distinct minority in
the field of econometrics, which has been dominated by the frequentist ap-
proach: computation has been the substantive reason for the minority status
of Bayesian Econometrics. The computing revolution of the last twenty years
has overcome this hurdle allowing to exploit the theoretical and conceptual
elegance of Bayesian Statistics in the empirical studies.

The model uses a log-linear demand function: the dependent variable is
the logarithm of aggregated demand and the explanatory variables are the
corresponding logarithm of prices, adjusted by the monthly consumer index



price (representing the price of the numeraire) and dummy variables (relative
to the day the zone etc...) which approximate the total expenditure.
Analytically, the model is:

log i = i + 6, 108(2) + 3 e (6)

where y; represents a point of aggregated demand and ¢ index the hour
of the day.

Given this functional form 3, represents the hourly elasticity of electricity.

Regressors dg; refer both to daily and zone intercept dummies and daily
and zone interaction dummies which allow to derive the hourly elasticity for
each day.

Let divide the day into two groups of hours (peak and off-peak hours),
one ranging from 9 a.m. to 8 p.m. (the time period in which the majority
of consumption and economic activities take place), the second instead goes
from 21 p.m. to 8 a.m.. We expect that participants, within these two groups
of hours can affect the market price sensitivity: setting prices in advanced
gives purchasers the time to react to high prices, postpone their electricity
consumption, reschedule their activities and their demand profiles, flattening
in this way the load curves. Given the differences in the main economics vari-
ables between peak and off-peak hours, we assume that the hourly demands
and the hourly spot prices are correlated within each group. If the derived
peak hour elasticities will be higher than off-peak elasticities, the assumption
of economic agents conditioning market elasticity will be confirmed. On the
other hand, if price responsiveness during peak hours do not significantly
differs from night hour elasticities, we can conclude that purchasers have
small market power and, given their stiff consumption profiles, they can not
influence market equilibrium prices and quantities.

Given this market structure, we apply a Seemingly Unrelated Regression
model. SUR model is a multiple equations regression model, in our case
regression equations are 12, one for each hours.

The SUR can be written as:

Ymi = Bm1Tmit + Brma@miz + - + BirTmik + Emi (7)

with ¢ = 1, ..., N observations for m = 1, ..., M equations. M represents
the number of hours whose electricity prices and loads are considered corre-
lated). Y., is the ith observation of the dependent variable (the log-demand)
in equation m, Ty, (with & =1, ..., K) is the ith obeservation of the of ex-
planatory variable of the mth equation and £, is the k regression coefficient
of the m—th equation.



Model can be written in a compact form. Let denote ¥, = (Y1, -y Ymn)'s Em =
(5m17 ceey gmN),

B
Ba

Bu
X = [Tt Tz - - T, ]
and define k = M k..
Stack all vectors together as:

EM

e
X

_XM

the model obtained takes the following form:

y=XB+e¢

The SUR model can be written as a familiar linear regression model. If we
assume €;,, to be i.i.d N(0,0?) for all 7 and all m, the model would simply
turn into the normal linear regression model. However, we have assumed
that market participants can reprogramming their activities and reschedule
their demand profiles (within the group of hours) if they suppose changes in
electricity prices. Therefore, €; must be i.i.d. N(0,%;) just for i = 1,.... N
where ¥J; is an M x M full variance covariance matrix.

Since observations refer to different hours, heteroskedasticity can be a
plausible assumption to be explored: each hour is characterized by different
price volatility and variability in the load which can be included in the model.



In this work we assume:

1. For each equation the error terms €;, j = 1,...,m have a multivariate
normal distribution with zero mean and covariance matrix %; that is a
positive definite matrix.

2. All elements of X remain fixed (i.e. are not random variables).

Heteroskedasticity refers to a model where the covariance matrix of the
error terms are different across equations, that is, in the block diagonal matrix
2, the non-null matrix are different from each other:

21 0 .. 0 h_l XA1 0
Varey—q= |0 B o 0| 0 . 0 _ e
0 0 .. %, 0 Bl xA,,

The matrix is written in terms of precision, substituting for >; the terms
h=1 x Aj_1 for all j = 1,...,m where h is the precision (the inverse of the
variance 02 = h~!). Moreover, we manage a hierarchical model, since we
assume that we do not know the values assumed by the elements of the
(); matrices. This model allows to free up the normality assumption, since
unknown heteroskedasticity is equivalent to a linear regression model with
Student-t errors.

Bayesian technique imposes to set Prior distributions for all parameters
of interest, then, the next step will be to choose adequate prior distribution
for fs parameters.

3.1 The transformed model

Before discussing the prior and posterior and the computational issues, gen-
eral results of the model are presented. Since € is a positive definite matrix,
Cholesky decomposition can be applied, then it exist a (Nm x Nm) matrix
P with the property that PQP' = Iy,,.

Given the model:

y=XB+e¢ 9)

with e ~ N(0,h™! x Q)
if we multiply both sides of the previous equation by P, we obtain the
transformed model
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v = X6+ e (10)

where y* = Py, X* = PX and ¢* = Pe. It can be verified that
e* ~ N(0,In,). Hence the transformed model falls again into the stan-
dard Normal linear regression model. There are two important implications
to be discussed.

Using the properties of the multivariate Normal distribution, the likeli-
hood function of transformed model can be seen to be:

R h )
POIAA) = Sy |5y~ XOY AW~ X0)| =
th27m h’ * x O\ [ * *
G |50 - X6 x|

Usually Bayesian technique suggests to use natural conjugate priors, mak-
ing the £’s distribution be dependent 2, in this way the joint posterior dis-
tribution would become: p(5,Q) = p(B|Q)p(Q). This joint prior has the
advantage to derive analytically tractable joint posterior distributions whose
main summary statistics are available, sparing in this way the use of poste-
rior simulator: However, the natural conjugate prior for the SUR model has
been found by many to be too restrictive. The prior covariances between
coefficients in each pair of equations are in fact all proportional to the same
matrix. For this reason, following the mainstream literature, here I apply the
extended version of the natural conjugate prior: the independent Normal -
Wishart prior:

p(B) = N(B,V) (12)

p(h) = G(vo, 5,7%) (13)

Moreover, we assume that 8 and h have distributions independent on €2,
whose prior will be defined later.

p(B,h,A) = p(B)p(h)p(A) (14)

Prior hyperparameter elicitation comes from the previous empirical study
of Bigerna et al. (2014b). Then, for the beta parameters I used a Normal
Prior distribution centered on the frequentist hourly estimates referring to
the previous year (2010).
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The joint posterior distribution of all parameters is, as always, the likeli-
hood function times the priors:

p(B,h, Aly) o< p(A) x
e {50 - x00 - x5)|

2
<ew{-3-mvi'G-a)} 0
 hz (Nm+vo—2) exp [— 2};]/_02]

It is not ascribable to a well-known functional form. However, functional
form of the full conditional posterior distributions are known: the full con-
ditional for 3 is a Normal:

where:
Vo= Vg +hXAX)! (17)
and
B, = ValVy ' By + hX AT XB(A)) (18)
with R
B(A) = (X¥X*) ' X*y* = (X'AX) ' X Ay (19)

The posterior distribution of A conditional on the other parameters in the
model is a Gamma:

hly, B, A ~ G(s;?,va) (20)

where:

v = Nm+ v (21)

and

2= (y — XBYA Ny — XB) + vos? (22)

Un

Conditioning on A, the two full conditional distributions for 5 and h com-
bine data and prior information. Given A, the full conditional distributions of
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[ and h are ascribable to a well-known analytical form, as in the traditional
linear model, the Gibbs Sampling algorithm can exploit this two densities
and constructs a stationary Markov Chain. The first part of simulation pro-
cedure has been defined. However, the full conditional posterior of A does not
take any recognizable form, then the joint posterior distribution p(S, h, Aly)
keeps remaining un-tractable since p(S3, h, Aly) # p(B, h|A,y) - p(A|B, h,y) .
The inference related to the random parameters 3, h and A has not been
possible yet: the prior distribution for A needs to be investigated in order to
design the second component of simulation.

When A is an unknown parameter, the elements of the matrix €2 in (8)
become random variables. The treatment of heteroskedasticity of unknown
form is a challenging task and involves the use of a hierarchical prior.

Introducing unknown heteroskedasticity increases the number of param-
eters to be estimated; if we treat Aq, ..., A,, as completely independent and
unrestricted matrices, we would not have enough observations to estimate
each one of them. For this reason the exchangebility of A; becomes an as-
sumption essential to deal with this high dimensional model. The prior for
A becomes:

p(A) = H Jw (A4 Ao, V) (23)

which states that Aj;s are different from one another but they are 7.i.d.
draws from the same Wishart distribution (the hierarchical prior). The hier-
archical prior imposes a structure to the model that preserves flexibility and
makes estimation be possible. The use of a Wishart prior distribution allows
to turn out a linear regression model with 7.7.d. Student-t error terms with
vy > m degrees of freedom.

In other words :

g|A; ~ N(0,07A7Y) (24)
Ai ~ W(Ao, V)\) (25)
g ~ t(0,0% 1) (26)

The model becomes more flexible since Student-t distribution that is a
more general class of distributions that includes Normal density as a special
case (occurring when the degrees of freedom v, tent to infinity).

Our treatment of unknown heteroskedasticity is equivalent to a scale mix-
ture of Normal. The error terms ¢; are distributed according to a mixture of
m different normal distributions. That is:
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~1/2
g=) ey (Oér + (H))™Y mj) (27)
J
where n,; is i.i.d N(0,,) fori = 1,..., N, j = 1...J and e;;, a; and Hj are all
parameters. The e;; is a dichotomous random variable and indicates which
distribution component in the mixture the ith error is drawn from.

{1 ifngN(ozj,Hj)
61']' =

28
0 otherwise (28)

Since it is unknown which component the ith error is drawn from, we
define p; = P(e;; = 1) for j = 1,...,m the probability of the error being
drawn from the jth component in the mixture. Formally it means that e;;
are i.i.d draws from a Multinomial distribution

e;i ~ M(1,p) (29)

where p = (p;...pn)’ is the probability vector p.

The assumption that A; follows a Wishart distribution and that, given A;,
the errors are independent Normal (0, h 1A} 1) is equivalent to the assump-
tion that the distribution of error term ¢ is a weighted average of Normals
having different variances but the same means (i.e. all errors have mean
equal to zero). When we mix the error terms’ normal distributions using
fw (Ai]Ag,vy), they end up to be equal to the Student-t distribution. In-
tuitively, assuming that a Normal model is too restrictive, a more flexible
distribution taking a mixture (the weighted average) of Normals can be cre-
ated. As more and more Normals are mixed, as the distribution becomes
more and more flexible and can approximate any distribution with high de-
gree of freedom. Mixtures of Normal are powerful tool to be used when
economic theory does not suggest any particular form of likelihood function
and you wish to be more flexible.

However, this model uses a finite mixture of Normal and it cannot be
considered non-parametric in the sense that it can not accomodate any dis-
tribution, it is ”just an extremely flexible modelling strategy” (Koop et al.,
2007).

Parameter v, is not known and Bayesian framework imposes to define a

prior distribution p(v,). The prior of \ is specified in two steps, firstly we
N

specify p(Alv,) = HfW(Ai’Am vy), secondly we define p(v,); in this way
i=1

these two steps refer to a hierarchical prior model. p(A|v,) and p(v,) are the

features necessary to design the second part of the simulation procedure.
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Let it focus on p(Aly, 5, h,vy) and p(vyly, B, b, A).

N
p<A|y757 hu V)\) = Hp(Ai|yaﬁ7h7V>\) (30)
i=1
where

p(Nily, B, h,vy) =W ((I/)\ +m) [h(gia;)]‘l + vy, v+ m) (31)

Conditional on (, e; can be calculated and hence also the parameters of
the Gamma density can be sampled within the Gibbs sampler.

Problems arise in the derivation of full conditional posterior for v,. Since
vy 1s positive we assume as a prior an exponential distribution that is a
gamma with two degree of freedom:

p(va) = G(v,2) (32)

Then, the full conditional posterior is:

p(aly, B, h, A) = p(vA|A) o< p(Alva)p(va)* (33)
The kernel of the posterior conditional of v, is simply (30) times (32):

p(valA) oc p(Alva)p(va)

Uy 2 v\ N
< (5) 7 (%) expl=m) (34)
2 2
where
1 1
_ -1 -1
n= V_U + 5 E [ln |A‘Z ) + ZfT"AO Ai} (35)

i=1
The density derived in (34) is not again a standard one, so algorithm for

the posterior simulation of the degree of freedom need to be performed. The
simulation strategy is the following:

e Use Random-Walk-Metropolis-Hastings to simulate a sample from p(vy|A).

e Given vy, run Gibbs Sampling simulating p(S, h, A, v,|y) using the
{v\} sample, p(Bly, h, A) in (16) and p(hly, 3,A) in (20).

Since v, does not eneter in the likelihood p(valy, B, h, A) = p(va|)).
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The candidate generating function is q(l/g\s_l); vy) = N([vy — V&S_l)}, 0.2) and
number of replications are set equal to 11000.

Setting the number of replication equal to 11000 guarantees that the
chain takes enough steps to cover all the parameter space, diagnsotic proce-
dure shows satisfactory results: the convergence diagnostic tests performed
do not refuse the null hypotesis of convergence to the posterior density. Af-
ter discarding the first 1000 realizations, the chain {8, A’ yf\}lwoo The

i=1001"
sequence simulate a sample from the posterior p(f, h, A, vx|y).

4 Empirical Results

Data refers GME daily data for the 2011 and they had been collected in
monthly dataset starting from January 2011 to December 2011. Each monthly
dataset accounts for 1.5 millions of raw observations and Bid pertaining the
demand side are about 400-450 thousand observations, the 20-25% of the to-
tal amount of offers. In each hour of the two years I ranked the bids according
to the merit order (price descending order); I included also the rejected bids
in order to have the estimation of elasticities relative to the prices of de-
mand curve lower than equilibrium price. These latter elasticities represent
in fact the real responsiveness to change in price of purchaser less incline to
buy. Then, I aggregated all inelastic bids (bids with submitted price equal
to 3000), computing in this way the market point of demand corresponding
to the intercept. Finally I derived the remaining downward sloping market
demand curve by horizontal sum of bids characterized by the same price.

At the end of the procedure each monthly Dataset accounts for a sample
size ranging from 15558 observations in February to 23148 observations in
November 2011. For each system of equations we derive the hourly-elasticity
for each day of the month by simply adjusting the coefficient related to the
log-price regressors through the coefficient related to the daily (iteration)
dummy variables. In this way we have derived all beta elasticity for each
hour and each day.

In order to have some statistical summaries we aggregated the later es-
timates in the hourly average elasticity for each month 2. Firstly, it can be
noticed that average elasticities vary within the hours of the day. In 2011
estimates go from a minimum value of from -0.14, recorded in September to
-0.0360 recorded in November Moreover, allowing the variance to differ across
observations of the same equations has led the peak hour elasticities to be,
on average, higher than off-peak ones. The model confirms the Bollino and

2For a comparison with estimates derived using an Homoskedastic model see D’Errico
and Bollino (2015)
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Bigerna’s results. Comparing to the off-peak estimates, peak hour elasticities
show higher variability, going from -0.14 to -0.0484, while the off-peak ones
vary between -0.070 and -0.0359. Secondly, in 2011 elasticities are higher
during the off-peak hours. In the peak hours period, electricity quantities
traded are greater than the average as it is shown by the previous tables and
confirmed by high frequency of congestion.

[Table 1 - Table 2 here]

As regards to zone segmentation, we computed average elasticities within
the group of hours having the same number of zone segmentation after con-
gestion. Estimates shows that during Peak hours higher elasticities has in
fact been recorded when the single market occurred. When the transmis-
sion constraints are violated, elasticity becomes lower and this is particular
evident during the peak hours. High levels of demand causing congestion re-
duces the responsiveness to change in price. Moreover, frequent congestions
during peak hour may suggest that electricity is an essential commodity
whose demand is stiff and whose consumption can not be postponed.

Off-peak estimates instead, do not show a well defined behaviour. During
off-peak hours electricity is allocated essentially for domestic uses and it
means that in this model end-consumers have take the same behaviour with
respect to market segmentation and the risk of congestion.

Elasticities aggregated by PUN percentiles are higher when lower levels
of price have been recorded. Lower price levels mean low quantities traded
and lower income levels. Then, as I said before, consumers with limited
expenditure availability (referring essentially to domestic user) have more
flexible behaviour given changes in price.

[Table 3 - Table 5 here]

The decomposition of average elasticities between peak and off-peak hours
shows that within peak hours, the lower elasticities were recorded when both
single market and maximum segmentation market (four zone division) oc-
curred. The lowest average elasticity was recorded in the presence of maxi-
mum segmentation of national market that gives evidence of higher levels of
demand and income. As we said before, high levels of expenditure availabil-
ity affect demand elasticity reducing the responsiveness to change in price.
Moreover, congestions during the peak hours may suggest that electricity is
an essential commodity whose demand is stiff and whose consumption can
not be postponed.

[Table 6 - Table 10 here]
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5 Conclusions

The models proposed highlights that buyers in the Italian Wholesale Elec-
tricity Market react to change in price since the estimated elasticities are
different from zero.

Moreover, the estimates differ from one another during the day, on the
strenght of the level of electricity loads, the market segmentation structure
and the levels of PUN.

In the Heteroskedastic Multivariate Linear Model, the elasticities recorded
during peak hours are higher than Off-Peak estimates. Moreover buyers man-
tain their higher reactivity to changes in price when there is not congestion
and when PUN records low values.

Further development of the research may be the application of the het-
eroskedastic model to the more recent data (from 2012 to 2015). Moreover,
also the computational part can be implemented. Heteroskedastic model
represents a novel in the empirical analyses, but the multi-dimension of the
inferential problem made the construction of the algorithm the most chal-
lenging task of my thesis. The heteroskedastic model designs for empirical
data a statistical framework rigorous and detailed. However, posterior simu-
lation requires the discretional choice of the proposal density and the tuning
of its parameters, first of all the variance, affecting the behaviour of the chain
and the resulting posterior. Running the procedure with other parameters
and alternative functional forms of the candidate generating density could be
a possible development in order to make a comparison between the different
derived estimates.
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Tables

Tab. 1:

Hourly Average Elasticity. 2011.

2011
Average Elasticity =
I Quarter IT Quarter ITI Quarter IV Quarter
Peak -0.0778 -0.0677 -0.0882 -0.0591
Off-Peak -0.0533 -0.0562 -0.0556 -0.0558

Tab. 2: Average Elasticity by Quarter. 2011.

19

Hour |Januvary ||February " March || April " May || June " July ||August||September"()ctober||November||D ecember
o -0.0756 -0.0699 -0.086%9 -0.0676 -0.0853 -0.0495 -0.0506 -0.0730 0.1388 -0.0579 -0.0603 -0.0599
10 -0.0764 -0.0696 -0.0864 -0.0679 -0.0855 -0.0492 -0.0509 -0.0731 0.1321 -0.0582 -0.0598 -0.0600
11 -0.0771 -0.0695 -0.0867 -0.0682 -0.0859 -0D.0484 -0.0510 -0D.0769 0.1387 -0.0582 -0.0599 -0.0579
2 -0.0771 -0.0705 -0.0872 -0.0682 -0.0863 -0D.0485 -0.0504 -D.0728 0.1342 -0.0578 -0.0600 -0.0556
13 -0.0769 -0.0707 -0.0877 -0.0677 -0.0868 -0.0490 -0.0505 -0.0754 0.1355 -0.0568 -0.0599 -0.0571
g 14 -0.0761 -0.0701 -0.0876 -0.0686 -0.08B63 -0.0493 -0.0503 -0.0777 -0.1416 -0.0569 -0.0603 -0.0579
2 15 -0.0759 -0.0701 -0.0878 -0.0677 -0.0859 -0D.0498 -0.0505 -D.0758 0.1374 -0.0571 -0.0607 -0.0615
16 -0.0758 -0.0706 -0.0875 -0.0682 -0.0852 -0.0496 -0.0508 -D.0756 0.1398 -0.0578 -0.0602 -0.0588
17 -0.0751 -0.0707 -0.0872 -0.0678 -0.0853 -D.0488 -0.0512 -D.0757 0.1371 -0.0579 -0.0605 -0.0610
18 -0.0751 -0.0706 -0.0868 -0.0676 -0.0859 -0D.0486 -0.0514 -D.0767 0.1369 -0.0578 -0.0611 -0.0612
19 -0.0759 -0.0703 -0.086%9 -0.067Y9 -0.0856 -0.04953 -0.0520 -0.0795 -0.1387 -0.0586 -0.0610 -0.0613
20 -0.0753 -0.0710 -0.0869 -0.068B8 -0.0856 -0.04%39 -0.0516 -0.07B2 @A’BD -0.0582 -0.0611 -0.0581
21 -0.0571 -0.0528 -0.0452 -0.0580 -0.0630 -0.0438 -0.0594 -0.0577 -0.0498 -0.0707 -0.0395 -0.0607
22 -0.0572 -0.0541 -0.0456 -0.0592 -0.0657 -0.0434 -0.0588 -0.0576 -0 0487 -0.0706 -0.0419 -0.0612
2 -0.0573 -0.0536 -0.048% -0.0580 -0.0629 -0.0432 -0.0592 -0.0576 -0.0435 -0.0676 -0.0447 -0.0596
24 -0.0576 -0.0522 -0.045% -0.0613 -0.0662 -0D.0427 -0.0588 -0.0577 -0 0498 -0.0664 -0.0418 -0.0595
” 1 -0.0576 -0.0553 -0.0455 -0.0595 -0.0650 -0.0432 -0.0587 -D.0578 -0.0496 -0.0701 -0.0422 -0.0601
3 2 -0.0581 -0.0557 -0.0470 -0.0603 -0.0679 -0.0439 -0.0588 -0.0578 -0.0503 -0.0675 -0.0460 -0.0599
g 3 -0.0580 -0.0559 -0.0504 -0.0619 -0.0632 -D.0438 -0.0588 -0.0577 -0.0514 -0.0645 -0.05372 -0.0600
- 4 -0.0579 -0.0556 -0.0521 -0.0641 -0.0642 -0.0439 -0.0590 -0.0577 -0 0506 -0.0668 -0.0365 -0.0604
5 -0.0573 -0.0532 -0.0526 | -0.0594 -0.0665 -0.0429 -0.0593 -0.0569 -0.0504 -0.0622 -0.0359 -0.0607
1] -0.0567 -0.0519 -0.0517 -0.0584 -0.0635 -0.0429 -0.0591 -0.0569 -0 0510 -0.0675 -0.0562 -0.0603
7 -0.0570 -0.05351 -0.0500 -0.0582 -0.0666 -0.0435 -0.0593 -0.0569 -0.0509 -0.0689 @359) -0.0609
8 -0.0572 -0.0526 -0.0475  -0.0624 -0.0676 -0D.0441 -0.0591 -D.0565 -0.0513 -0.0675 -0.0366 -0.0611




January February March April May Jun
Percentile
Peak |Off-Peak| Peak ||Off-Peak| Peak |Off-Peak| Peak |Off-Peak| Peak |Off-Peak| Peak |Off-Peak
10 -0.0703 -0.0710 . -0.0858 | -0.0723 || -0.0656 | -0.0438 | -0.0832 | -0D.0742 | -0.0520 | -0.0574
o -0.0738 . -0.0694 | -0.0374 || -0.0861 | -0.0502 || -0.0685 | -0.0664 | -0.0B78 | -0.0587 | -0.0518 | -0.0439
8 -0.0742 | -0.0692 | -0.0708 | -0.0630 | -0.0854 | -0.0406 | -0.070% | -0.0613 | -0.085% | -0.0715 | -0.0457 | -0.0447
7 -0.0762 | -0.0664 | -0.0685 | -0.0508 | -0.0877 | -0.0597 | -0.0685 | -0.0714 (| -0.0883 | -0.0731 | -0.0481 | -0.0447
6 -0.0796 | -0.0560 | -0.0700| -0.0512 | -0.0B62 | -0.0594 | -0.0646 ( -0.0587 || -0.085% | -0.0682 | -0.0485 | -0.0473
5 -0.0761 | -0.0542 | -0.0687 | -0.0558 || -0.08B0 | -0.0299 | -0.0685 | -0.0600 (| -0.0826 | -0.0729% | -0.0514 | -0.0466
4 -0.0763 | -0.0552 | -0.0704 | -0.0522 || -0.0BB7 | -0.0430 | -0.0666 | -0.0566 || -0.0836 | -0.0585 | -0.0456 | -0.0404
3 -0.0718 | -0.0575 | -0.0729 | -0.0565 | -0.0902 | -0.0499 ( -0.0670 ( -0.0607 || -0.0842 | -0.0633 | -0.0486 | -0.0455
2 -0.0716 | -0.0613 | -0.0753 | -0.0458 || -0.08%2 | -0.0535 | -0.071% ( -0.0619 || -0.0812 | -0.0657 | -0.0457 | -0.0403
1 -0.0547 -0.0568 -0.0478 || -0.0713 | -0.05%0 | -0.079% | -0.0570 | -0.0394 | -0.0435
Tab. 3: Monthly Peak Average Elsticity by PUN Percentile. Jan.-Jun.2011
. July Apgust September October November December
Percentile Peak [Off-Peak|| Peak |Off-Peak| Peak (|Off-Peak| Peak |Off-Peak|| Peak |Off-Peak| Peak |Off-Peak
10 -0.0505| -0.0648 |(-0.0840| -0.0480 ||-0.1652| -0.0458 |(-0.0577| -0.0715 |-0.0609| -0.0384 |[-0.0620| -0.0618
o -0.0531| -0.0685 |-0.0840| -0.0612 ||-0.1211| -0.0501 ([-0.0570| -0.0614 |-0.0608| -0.044% |(-0.0600| -0.0620
8 -0.04%0 | -0.0604 (-0.0721| -0.0588 |[-0.1273| -0.0552 (-0.0586| -0.0766 [|-0.0589( -0.0305 (-0.0536| -0.0583
7 -0.0522 | -0.0578 |(-0.0749| -0.0565 ||-0.1157| -0.0483 |[-0.0574| -0.0651 |-0.0608| -0.0470 |[-0.0481| -0.0612
6 -0.0513| -0.0613 (-0.0732| -0.0533 ||-0.0808( -0.0443 (-0.0571| -0.0696 |-0.0588| -0.0412 |[-0.0630| -0.0566
5 -0.0511| -0.0654 |(-0.0736| -0.0563 ||-0.1743| -0.0480 |(-0.0601| -0.0668 |-0.0585| -0.0426 |[-0.0641| -0.0644
4 -0.0494 | -0.0603 (-0.0715| -0.0618 ||-0.1503( -0.0507 (-0.0593| -0.0638 |-0.0621| -0.0385 |[-0.0636| -0.0699
3 -0.0516| -0.0581 (-0.0777| -0.0556 [[-0.1614| -0.0511 (-0.0564| -0.0562 ||-0.0617| -0.0517 (|-0.0633| -0.0663
2 -0.0468 | -0.0605 (-0.0668| -0.0636 |[-0.1293| -0.0564 (-0.0612| -0.0666 ||-0.0632| -0.0434 (|-0.0917| -0.0533
1 -0.0552 | -0.0526 (-0.0692| -0.0599 -0.0541 (-0.0630| -0.0759 ||-0.0640( -0.0259 -0.0608

Tab. 4: Monthly Average Elsticity by PUN Percentile. Jul.-Dec.2011

] Mean Stand. Dev Min. Max.
Percentile
Peak Off-Peak|Peak Off-Peak|Peak Off-Peak|Peak Off-Peak|
1 -0.070 -0.054 0.023 0.028 -0.224 -0.131 -0.010 0.000
2 -0.072 -0.052 0.019 0.027 -0.216 -0.130 -0.010 0.000
3 -0.070 -0.053 0.022 0.025 -0.262 -0.125 -0.012 -0.001
4 -0.068 -0.059 0.021 0.024 -0.217 -0.132 -0.001 -0.002
5 -0.070 -0.055 0.027 0.027 -0.292 -0.126 -0.005 0.000
i) -0.070 -0.054 0.032 0.026 -0.291 -0.127 0.000 0.000
7 -0.073 -0.057 0.037 0.024 -0.252 -0.129 0.000 0.000
8 -0.078 -0.056 0.045 0.024 -0.282 -0.124 -0.001 0.000
0 -0.078 -0.057 0.049 0.024 -0.298 -0.119 -0.001 -0.001
10 -0.084 -0.056 0.060 0.024 -0.309 -0.099 -0.002 0.000
Tab. 5: Average Elsticity by PUN Percentile. 2011
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Zone 2011-Jan.-Jun. 2011-Jul.-Dec.
Average Peak Off-Peak || Average Peak Off-Peak
5 1] 1] 1] 1] 1] 1]
4 -0.062 -0.068 -0.056 -0.061 -0.057 -0.065
3 -0.060 -0.067 -0.053 -0.067 -0.076 -0.058
2 -0.063 -0.069 -0.056 -0.065 -0.071 -0.059
1 -0.062 -0.070 -0.054 -0.062 -0.070 -0.055

Tab. 6: Average Elasticity by Zone Segmentation. 2011.

= January February March April May June

§ Freq. |[Av. Elast, [Freq. ||Av. Elast. ||Freq. [Av. Elast. |[Freq. |Av. Elast. |Freq. |[Av. Elast. ([Freq. |Av. Elast.
5 0 O 0 0 0 H

4 5 -0.077 11 -0.061 4 -0.091 1 -0.065 16 -0.079 17 -0.035
1 21 -0.077 146 -0.061 125 -0.085 110 -0.067 107 -0.084 153 -0.029
2 || 265 -0.075 178 -0.060 226 -0.088 215 -0.068 225 -0.088 205 -0.034
1 7 -0.077 1 -0.059 17 -0.090 34 -0.071 24 -0.081 5 -0.043
Tab. 7: Average Peak Elasticity by Zone Segmentation. Jan.-Jun. 2011.

= July Aungust September October November December

§ Freq. |[Av. Elast. (Freq. |Av. Elast. |Freq. |[Av. Elast. |[Freq. |Av. Elast. |Freq. |[Av. Elast. |Freq. || Av. Elast.
5 H 0 0 0 o 0

4 22 -0.065 0 10 -0.047 7 -0.056 1 -0.061 2 -0.054
3 || 152 -0.060 52 -0.067 221 -0.147 146 -0.060 163 -0.061 137 -0.060
2| 186 -0.062 311 -0.060 124 -0.132 202 -0.056 156 -0.060 202 -0.059
1 2 -0.076 9 -0.088 5 -0.074 17 -0.064 40 -0.059 31 -0.057

Tab. 8: Average Peak Elasticity by Zone Segmentation. Jul.-Dec. 2011.
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2 Januvary February March April May June

~ Freq. | Av. Elast. |Freq. | Av. Elast. |[Freq. [[Av. Elast. |Freq. | Av. Elast. |Freq. ||Av. Elast. [Freq. |[Av. Elast.

5 1] o 0 1] 0 0

4 7 -0.055 10 -0.048 3 -0.070 g -0.058 15 -0.067 18 -0.040

3| 117 -DO57 73 -0.052 || 105 -0.053 152 | -0060 | 162  -0.061 123 -0.035

2] 121 -0.057 || 135 -0.057 | 122  -0.042 | 120 -0.061 185 -0.070 | 157 @ -0.051

1| 127 -0058 | 118  -0.053 141 -0.050 BO -0.060 30 -0.061 62 -0.043
Tab. 9: Average Off-Peak Elasticity by Zone Segmentation. Jan.-Jun. 2011.

2 July Aungnst September October November December

~ Freq. | Av. Elast. |Freq. | Av. Elast. [[Freq. [[Av. Elast. ||Freq. | Av. Elast. |Freq. ||Av. Elast. [[Freq. ([Av Elast.

5 1] o 0 1] 0 0

4] 25 -0.057 5 -0.079 7 -0.059 7 -0.067 1 -0.079 4 -0.048

3] 193 -0.058 | 1862  -0.057 (| 172  -D.054 93 -0.066 04 -0.057 &7 -0.052

2| 109 | -0060 (| 128  -0.060 o0 -0.047 || 155 -0.069 | 127  -0.060 | 153 -0.057

1] 45 -0.062 77 -0.051 g2 -0.046 | 117 @ -00O67 || 138  -0.051 148 | -0.053
Tab. 10: Average Off-Peak Elasticity by Zone Segmentation. Jul.-Dec. 2011.
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1 The Italian Power Exchange

Electricity industry is a leading industrial sector since it is a fundamental
input for the production processes in any industrialised country. Its strate-
gic importance for economic development and its social and environmental
impact imposes an effective regulation. For this reason it is not surprising
that the electric sector was regulated by public commissions and the tariffs
were kept fixed over long periods of time.

In the last decades liberalization process started in most of the developed
countries, the ownership in the electricity sector became private and industry
has been split up into the different functions.

The liberalization of the electricity sector has led to overcome the sys-
tem of vertically integrated monopoly. Generation and retail functions have
become open to competition.

Transition from state-owned monopolies to competitive markets was not
always smooth and concerns had been raising in many countries; market
structure affects in fact competition and for this reason the design of dereg-
ulated electricity markets offer economists a changeling opportunity. They
have been attempting to design well functioning markets that gives play-
ers the correct incentives to improve production efficiency and limit market
power. In the recent years many economists have focused on the effects that
market design may have on equilibrium prices market power of supplier. The
market structure affects in fact the consumer reactivity to change in price,
that is the elasticity.

As in other international experiences, the creation of the Italian Electric-
ity market (IPEX) responded to two specific requirements:

e promoting competition in electricity generation, sale and purchase, un-
der criteria of neutrality, transparency and objectivity, through the creation
of a market place;

e ensuring the economic management of an adequate availability of an-
cillary services.

The organization and the management of the Italian electricity market
has been entrusted GME. Unlike other European markets, Italian Power Ex-
change is not a purely financial market aimed only to the definition of prices
and quantities, but it is a physical market where injection and withdrawal
profiles are scheduled and really delivered.

The Electricity Market is articulated in the Spot Electricity Market (MPE)
Forward Electricity Market and the Financial Derivatives Market (IDEX).
The Spot Electricity Market is divided into three submarkets:

The Day-Ahead Market (M GP), which is the venue for the trading
of electricity supply offers and demand bids for each hour of the next day.



All electricity operators may participate in the MGP. GME accepts Offers
and Bids by the merit order, taking into account the current transmission
constraints. Accepted supply offers are remunerated at the Zonal Clearing
Price, while accepted demand bids are remunerated at the National Single
Price (PUN). The accepted Offers/Bids determine the preliminary Injection
and Withdrawal Schedules of each Offer Point for the next day.

The Intra-Day Market (MI), which has replaced the existing Adjust-
ment Market, it is venue for the trading of electricity supply offers and de-
mand bids which modify the Injection and Withdrawal Schedules resulting
from the Day-Ahead Market. GME accepts the Offers and Bids submitted
into the MI by merit order, taking into account the Transmission Limits
remaining after the Day-Ahead Market. Accepted Offers and Bids are remu-
nerated at the Zonal Clearing Price and they Bids modify the preliminary
schedules determining the revised injection and withdrawal schedules for the
next day.

The Ancillary Services Market (MSD) is the venue for the trading of
supply offers and demand bids in respect of ancillary services. This market
is essentially used to acquire resources for relieving intra-zonal congestions,
procuring Reserve Capacity and balancing the injections and withdrawals in
the real time. Participation in the MSD is restricted to units that are autho-
rised to supply ancillary services and to their dispatching users. Participation
in the MSD is mandatory.

We focus on the Day-Ahead Market (MGP) where hourly blocks of elec-
tricity are traded for the next day are negotiated. In this market both the
injection and withdrawal programs for the next day are defined in order to
reach the equilibrium prices and quantities. The MGP is organized according
to an implicit double auction model and the most of the transactions takes
place in this market. The session opens at 8 a.m. on the ninth day before
the delivery-day and closes at 9.15 a.m. on the day before the delivery is
executed.

During the session, market participants submit offers to buy or sell that
indicate the amount of energy and the maximum price (or the lowest price)
at which they are willing to buy (or sell). In particular:

e The offers to buy (BID) represent the willingness to purchase an amount
of energy that does not exceed that specified in the offer at a price no
higher than that reported in the same offer.

e The offers to sell (OFF) express instead the willingness to sell an
amount of energy not greater than that specified in the offer and at
a price not lower than that indicated in the same offer. In the supply



side operators can relate offers only to the injection points. If the offer
is accepted, the producer undertakes to enter in the network, in a given
period, the amount of electricity specified in the offer.

Each offer, to sale and purchase, must be consistent with the physical
constraints of the corresponding unit point. The Day-Ahead Market is a
zonal market, reflecting the structure which the national transmission grid
is divided in. Each zone is characterized by an insufficient interconnection
capacity and when a congestion occurs the selling price is zonal differentiated:
selling price is lower in the upstream area of congestion and higher in the
downstream ones. In depth, when the market session closes, the GME starts
the process for the resolution of the market. For each hour of the next day,
the algorithm accepts all the bids and offers in order to maximize the value
of trading, within the limits of maximum transit between zones.

The process of acceptance can be summarized as follows:

All offers to sell are sorted according an ascending price order forming ag-
gregate supply curve,while bids are ordered by descending price order drawing
the aggregate demand curve.

The intersection between the two curves derives the total quantity traded,
the equilibrium price, the accepted BID and OFF.

If electricity flows resulting from the programs do not violate any tran-
sition constraints, the equilibrium price is unique for all the zones. The
accepted offers to sale are those whose sale prices are not higher than the
equilibrium price, while the accepted bids are those whose purchase prices is
not lower than the equilibrium price.

If at least one transmission constraint is violated, sale price are zonal
differentiated and the algorithm starts the so called ”Market Splitting Mech-
anism”. It splits in fact the market into two zones, one for the export, which
includes all zones upstream of the bond, and one for the import, which in-
cludes all areas downstream of the bond, repeating in each of the two areas
the process described above: i.e. it derives in each zone the corresponding
aggregate supply and demand curve. The outcome are two equilibrium zonal
price zone (p,, and p,,). In particular, p,, is greater in the area of import
and is smaller in the area of export. If, within each zone, the resulting equi-
librium quantities violate further transition constraints, the splitting market
process goes on within the zones in order to obtain an outcome consistent
with the grid constraints.

With regard to the purchase price of electricity, GME has implemented an
algorithm that, given congestion and differentiated zonal sale prices, apply
just a single national purchase price (PUN), that is the average of the zonal
sale prices weighted with the zonal consumptions. The PUN applies only to
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withdrawal points belonging to national geographical areas.
The mechanism of market splitting is an ”implicit auction” for the non-
discriminatory allocation of the transit rights.

2 Theoretical Background

Since the early 1970s, when energy caught the attention of policy makers in
the aftermath of the first oil crisis, research on energy demand has vastly
increased in order to overcome the limited understanding of the nature of
energy demand and demand response due to the presence of external shocks
encountered at that time.

Elasticity, in the energy demand analysis framework, is a feature that
has received particular attention in the studies of consumer preference and
willingness to pay, as in the institutional studies guiding policy decisions
as taxation and welfare. Moreover, the consumer reactivity to changes in
price can express market efficiency. Then, in strategic economic sectors, this
measure can be seen as a tool leading the National Regulators in the market
structure definition processes. Previous empirical studies used data referring
the supply side of electricity market, given the assumption of oligopolistic
market structure, they estimate demand elasticity using residual demand
function. Bigerna and Bollino’s work [7] has been the first Italian study of
electricity demand elasticity using data referring the demand side.

Following this approach, this work estimated demand elasticity using the
same type of data. The main participants in the Italian Electricity wholesale
Market are industrial consumers using power as an input in the production
function to produce goods and services, while residential consumers have a
domestic use of electricity. Industrial agents choose the amount of electricity
input which minimizes their cost function given the technological constraint,
while residential customers are part of optimizing utility function process
given the budget constraint. For this reason our econometric approach will lie
inside the neoclassical framework and will be grounded on rational optimizing
behaviour theory.

Although data available refers only market prices and demand, the duality
approach gives us a theoretical justification, allowing to legitimately switch
from agent’s preference (optimization theory) to market demand (The Mar-
shallian demand) in which quantities are functions of prices and total expen-
diture. We assume all the agent taking part in the MGP rationally behave
minimizing a cost function, (production cost function for industrial buyers
and expenditure function for the residential ones).

Recalling the tradition introduced by Brendt and Wood [8] the cost func-



tion assumed is the trans-log cost function, that is the the second order
approximation of an agent’s cost function. Its general form can be written
as follow:

InC= ay+> a;lnp; + %Zizj%j Inp;Inp; + agIn@
+%’YQQ(1I1 QP+, Yo, InQInp; (1)

where C'is the total cost, i and j are the inputs (for industrial consumers)
or the other good for residential customers, p; is the factor or good prices, )
is the objective variable (the objective variable to be maximized: it can be
the output quantity or the consumer’s utility)

This cost function must satisfies certain properties:

e Homogeneous of degree 1 in prices;

e Satisfying all the conditions guaranteeing a well-behaved production
(or utility) function

e Homothetic (separable function of the objective variable and prices).

Minimization problem is usually solved using Lagrangian techniques, lead-
ing to the first order condition:

M = hi(Q,p) = q; for all i (2)
Opi

Under the given assumptions, solving the problem yields to a demand
functions expressed in terms of prices and the objective variable: ¢; =
hi(Q,p). These functions are the Hicksian demands or the compensated de-
mand equations because they consider the objective variable () as a constant
parameter. For empirical works the optimization model need to be linked
to economical model in which quantities are a function of prices and total
expenditure. The duality approach is the theoretical framework allowing to
shift from the production possibility sets (and the system of preferences) to
the market demand function.

Given the convexity of production possibility sets (or convex preferences
for end consumers), the Roy Identity allows to derive Marshallian demand
from the Hicksian demand substituting the objective variable @) in the Hick-
sian demand with the profit function (or the indirect utility function).

First we derive the Minimum Expenditure function and we put it into
profit function or the indirect utility function V' (m, p), substituting m with
C(Q,p) evaluated at the optimum level. This lead to the trivial identity:
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V(C(Q,p),p) = Q(m,p) (3)

where Q(m, p) is the utility /profit function of the maximization problem, p
is the price vector and m is the budget constraint. This says that the indirect
profit /utility function V(C(Q, p), p), that minimizes the cost for achieving a
given level of utility given a set of prices, is equal to that utility function u (of
the maximization problem) evaluated at those prices . Taking the derivative
of both sides of this equation with respect to the price of a single input/good
p; (with the @’s level held constant) gives:

V(C(Q,p),p) 9C(Q,p)  V(C(Q,p).p)

Rearranging what we obtain is:
V(C(Q,p),
9~ Vicenn — i@ p)=gimp) (5)
Di — 5

The function g;(m.p) represents the Marshallian demand which expresses
quantity demanded for an input or good as a function of its own price, the
budget constraint and the price of all the other goods.

Given the Marshallian demand function of electricity the multidimen-
sional model need to be reduced into a two dimensional problem. For this
reason, all the other goods and inputs will be bundled in a numeraire good.
The numeraire is evaluated at a price proxied by the monthly consumer price
index (adjusted excluding from its computation the energy consumption).

3 The Statistical Model

With regard to the econometric method, the work used a Bayesian procedure,
whose application in electricity demand analysis represents a novel approach.

Until recently, the Bayesian approach has been in a distinct minority in
the field of econometrics, which has been dominated by the frequentist ap-
proach: computation has been the substantive reason for the minority status
of Bayesian Econometrics. The computing revolution of the last twenty years
has overcome this hurdle allowing to exploit the theoretical and conceptual
elegance of Bayesian Statistics in the empirical studies.

The model uses a log-linear demand function: the dependent variable is
the logarithm of aggregated demand and the explanatory variables are the
corresponding logarithm of prices, adjusted by the monthly consumer index



price (representing the price of the numeraire) and dummy variables (relative
to the day the zone etc...) which approximate the total expenditure.
Analytically, the model is:

log i = i + 6, 108(2) + 3 e (6)

where y; represents a point of aggregated demand and ¢ index the hour
of the day.

Given this functional form 3, represents the hourly elasticity of electricity.

Regressors dg; refer both to daily and zone intercept dummies and daily
and zone interaction dummies which allow to derive the hourly elasticity for
each day.

Let divide the day into two groups of hours (peak and off-peak hours),
one ranging from 9 a.m. to 8 p.m. (the time period in which the majority
of consumption and economic activities take place), the second instead goes
from 21 p.m. to 8 a.m.. We expect that participants, within these two groups
of hours can affect the market price sensitivity: setting prices in advanced
gives purchasers the time to react to high prices, postpone their electricity
consumption, reschedule their activities and their demand profiles, flattening
in this way the load curves. Given the differences in the main economics vari-
ables between peak and off-peak hours, we assume that the hourly demands
and the hourly spot prices are correlated within each group. If the derived
peak hour elasticities will be higher than off-peak elasticities, the assumption
of economic agents conditioning market elasticity will be confirmed. On the
other hand, if price responsiveness during peak hours do not significantly
differs from night hour elasticities, we can conclude that purchasers have
small market power and, given their stiff consumption profiles, they can not
influence market equilibrium prices and quantities.

Given this market structure, we apply a Seemingly Unrelated Regression
model. SUR model is a multiple equations regression model, in our case
regression equations are 12, one for each hours.

The SUR can be written as:

Ymi = Bm1Tmit + Brma@miz + - + BirTmik + Emi (7)

with ¢ = 1, ..., N observations for m = 1, ..., M equations. M represents
the number of hours whose electricity prices and loads are considered corre-
lated). Y., is the ith observation of the dependent variable (the log-demand)
in equation m, Ty, (with & =1, ..., K) is the ith obeservation of the of ex-
planatory variable of the mth equation and £, is the k regression coefficient
of the m—th equation.



Model can be written in a compact form. Let denote ¥, = (Y1, -y Ymn)'s Em =
(5m17 ceey gmN),

B
Ba

Bu
X = [Tt Tz - - T, ]
and define k = M k..
Stack all vectors together as:

EM

e
X

_XM

the model obtained takes the following form:

y=XB+e¢

The SUR model can be written as a familiar linear regression model. If we
assume €;,, to be i.i.d N(0,0?) for all 7 and all m, the model would simply
turn into the normal linear regression model. However, we have assumed
that market participants can reprogramming their activities and reschedule
their demand profiles (within the group of hours) if they suppose changes in
electricity prices. Therefore, €; must be i.i.d. N(0,%;) just for i = 1,.... N
where ¥J; is an M x M full variance covariance matrix.

Since observations refer to different hours, heteroskedasticity can be a
plausible assumption to be explored: each hour is characterized by different
price volatility and variability in the load which can be included in the model.



In this work we assume:

1. For each equation the error terms €;, j = 1,...,m have a multivariate
normal distribution with zero mean and covariance matrix %; that is a
positive definite matrix.

2. All elements of X remain fixed (i.e. are not random variables).

Heteroskedasticity refers to a model where the covariance matrix of the
error terms are different across equations, that is, in the block diagonal matrix
2, the non-null matrix are different from each other:

21 0 .. 0 h_l XA1 0
Varey—q= |0 B o 0| 0 . 0 _ e
0 0 .. %, 0 Bl xA,,

The matrix is written in terms of precision, substituting for >; the terms
h=1 x Aj_1 for all j = 1,...,m where h is the precision (the inverse of the
variance 02 = h~!). Moreover, we manage a hierarchical model, since we
assume that we do not know the values assumed by the elements of the
(); matrices. This model allows to free up the normality assumption, since
unknown heteroskedasticity is equivalent to a linear regression model with
Student-t errors.

Bayesian technique imposes to set Prior distributions for all parameters
of interest, then, the next step will be to choose adequate prior distribution
for fs parameters.

3.1 The transformed model

Before discussing the prior and posterior and the computational issues, gen-
eral results of the model are presented. Since € is a positive definite matrix,
Cholesky decomposition can be applied, then it exist a (Nm x Nm) matrix
P with the property that PQP' = Iy,,.

Given the model:

y=XB+e¢ 9)

with e ~ N(0,h™! x Q)
if we multiply both sides of the previous equation by P, we obtain the
transformed model
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v = X6+ e (10)

where y* = Py, X* = PX and ¢* = Pe. It can be verified that
e* ~ N(0,In,). Hence the transformed model falls again into the stan-
dard Normal linear regression model. There are two important implications
to be discussed.

Using the properties of the multivariate Normal distribution, the likeli-
hood function of transformed model can be seen to be:

R h )
POIAA) = Sy |5y~ XOY AW~ X0)| =
th27m h’ * x O\ [ * *
G |50 - X6 x|

Usually Bayesian technique suggests to use natural conjugate priors, mak-
ing the £’s distribution be dependent 2, in this way the joint posterior dis-
tribution would become: p(5,Q) = p(B|Q)p(Q). This joint prior has the
advantage to derive analytically tractable joint posterior distributions whose
main summary statistics are available, sparing in this way the use of poste-
rior simulator: However, the natural conjugate prior for the SUR model has
been found by many to be too restrictive. The prior covariances between
coefficients in each pair of equations are in fact all proportional to the same
matrix. For this reason, following the mainstream literature, here I apply the
extended version of the natural conjugate prior: the independent Normal -
Wishart prior:

p(B) = N(B,V) (12)

p(h) = G(vo, 5,7%) (13)

Moreover, we assume that 8 and h have distributions independent on €2,
whose prior will be defined later.

p(B,h,A) = p(B)p(h)p(A) (14)

Prior hyperparameter elicitation comes from the previous empirical study
of Bigerna & Bollino [7]. Then, for the beta parameters I used a Normal
Prior distribution centered on the frequentist hourly estimates referring to
the previous year (2010).
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The joint posterior distribution of all parameters is, as always, the likeli-
hood function times the priors:

p(B,h, Aly) o< p(A) x
e {50 - x00 - x5)|

2
<ew{-3-mvi'G-a)} 0
 hz (Nm+vo—2) exp [— 2};]/_02]

It is not ascribable to a well-known functional form. However, functional
form of the full conditional posterior distributions are known: the full con-
ditional for 3 is a Normal:

where:
Vo= Vg +hXAX)! (17)
and
B, = ValVy ' By + hX AT XB(A)) (18)
with R
B(A) = (X¥X*) ' X*y* = (X'AX) ' X Ay (19)

The posterior distribution of A conditional on the other parameters in the
model is a Gamma:

hly, B, A ~ G(s;?,va) (20)

where:

v = Nm+ v (21)

and

2= (y — XBYA Ny — XB) + vos? (22)

Un

Conditioning on A, the two full conditional distributions for 5 and h com-
bine data and prior information. Given A, the full conditional distributions of
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[ and h are ascribable to a well-known analytical form, as in the traditional
linear model, the Gibbs Sampling algorithm can exploit this two densities
and constructs a stationary Markov Chain. The first part of simulation pro-
cedure has been defined. However, the full conditional posterior of A does not
take any recognizable form, then the joint posterior distribution p(S, h, Aly)
keeps remaining un-tractable since p(S3, h, Aly) # p(B, h|A,y) - p(A|B, h,y) .
The inference related to the random parameters 3, h and A has not been
possible yet: the prior distribution for A needs to be investigated in order to
design the second component of simulation.

When A is an unknown parameter, the elements of the matrix €2 in (8)
become random variables. The treatment of heteroskedasticity of unknown
form is a challenging task and involves the use of a hierarchical prior.

Introducing unknown heteroskedasticity increases the number of param-
eters to be estimated; if we treat Aq, ..., A,, as completely independent and
unrestricted matrices, we would not have enough observations to estimate
each one of them. For this reason the exchangebility of A; becomes an as-
sumption essential to deal with this high dimensional model. The prior for
A becomes:

p(A) = H Jw (A4 Ao, V) (23)

which states that Aj;s are different from one another but they are 7.i.d.
draws from the same Wishart distribution (the hierarchical prior). The hier-
archical prior imposes a structure to the model that preserves flexibility and
makes estimation be possible. The use of a Wishart prior distribution allows
to turn out a linear regression model with 7.7.d. Student-t error terms with
vy > m degrees of freedom.

In other words :

g|A; ~ N(0,07A7Y) (24)
Ai ~ W(Ao, V)\) (25)
g ~ t(0,0% 1) (26)

The model becomes more flexible since Student-t distribution that is a
more general class of distributions that includes Normal density as a special
case (occurring when the degrees of freedom v, tent to infinity).

Our treatment of unknown heteroskedasticity is equivalent to a scale mix-
ture of Normal. The error terms ¢; are distributed according to a mixture of
m different normal distributions. That is:
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~1/2
g=) ey (Oér + (H))™Y mj) (27)
J
where n,; is i.i.d N(0,,) fori = 1,..., N, j = 1...J and e;;, a; and Hj are all
parameters. The e;; is a dichotomous random variable and indicates which
distribution component in the mixture the ith error is drawn from.

1 ifngN(ozj,Hj)
= _ 28
€ {O otherwise (28)

Since it is unknown which component the ith error is drawn from, we
define p; = P(e;; = 1) for j = 1,...,m the probability of the error being
drawn from the jth component in the mixture. Formally it means that e;;
are i.i.d draws from a Multinomial distribution

e;i ~ M(1,p) (29)

where p = (p;...pn)’ is the probability vector p.

The assumption that A; follows a Wishart distribution and that, given A;,
the errors are independent Normal (0, h 1A} 1) is equivalent to the assump-
tion that the distribution of error term ¢ is a weighted average of Normals
having different variances but the same means (i.e. all errors have mean
equal to zero). When we mix the error terms’ normal distributions using
fw (Ai]Ag,vy), they end up to be equal to the Student-t distribution. In-
tuitively, assuming that a Normal model is too restrictive, a more flexible
distribution taking a mixture (the weighted average) of Normals can be cre-
ated. As more and more Normals are mixed, as the distribution becomes
more and more flexible and can approximate any distribution with high de-
gree of freedom. Mixtures of Normal are powerful tool to be used when
economic theory does not suggest any particular form of likelihood function
and you wish to be more flexible.

However, this model uses a finite mixture of Normal and it cannot be
considered non-parametric in the sense that it can not accomodate any dis-
tribution, it is ”just an extremely flexible modelling strategy” (Koop [17]).

Parameter v, is not known and Bayesian framework imposes to define a

prior distribution p(v,). The prior of A is specified in two steps, firstly we
N

specify p(Alvy) = HfW(Ai’Ao, vy), secondly we define p(v,); in this way
i=1
these two steps refer to a hierarchical prior model. p(A|v,) and p(v,) are the

features necessary to design the second part of the simulation procedure.
Let it focus on p(Aly, 58, h,vy) and p(vyly, B, b, A).
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N

p(Aly, 8, h,va) = [ [ p(Aily, B, b, va) (30)

i=1
where
p(AZ’ya 57 h‘a I/)\) =W <(V/\ + m) [h<€’i€;>]_1 T UN VAT m) (31)

Conditional on 3, ¢; can be calculated and hence also the parameters of
the Gamma density can be sampled within the Gibbs sampler.

Problems arise in the derivation of full conditional posterior for v,. Since
vy is positive we assume as a prior an exponential distribution that is a
gamma with two degree of freedom:

p(vy) = G(vo,2) (32)

Then, the full conditional posterior is:

p(Waly, B,h, A) = p(va|A) o p(Alva)p(va)* (33)
The kernel of the posterior conditional of v is simply (30) times (32):

p(valA) oc p(Alva)p(va)

U % 125\ -N
<(5) 7 r(5)  exp-m) (34)
where
_ 1 + L g: [ A7) + tr|Ag A (35)
n Vo 2 p i 0 7

The density derived in (34) is not again a standard one, so algorithm for
the posterior simulation of the degree of freedom need to be performed. The
simulation strategy is the following:

e Use Random-Walk-Metropolis-Hastings to simulate a sample from p(v,|A).

e Given vy, run Gibbs Sampling simulating p(S, h, A, v,|y) using the
{v§} sample, p(Bly, h,A) in (16) and p(hly, 3, A) in (20).

!Since v, does not eneter in the likelihood p(valy, B, h, A) = p(va|)).
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The candidate generating function is q(l/g\s_l); vy) = N([vy — V&S_l)}, 0.2) and
number of replications are set equal to 11000.

Setting the number of replication equal to 11000 guarantees that the
chain takes enough steps to cover all the parameter space, diagnsotic proce-
dure shows satisfactory results: the convergence diagnostic tests performed
do not refuse the null hypotesis of convergence to the posterior density. Af-
ter discarding the first 1000 realizations, the chain {8, A’ yf\}lwoo The

i=1001"
sequence simulate a sample from the posterior p(f, h, A, vx|y).

4 Empirical Results

Data refers GME daily data for the 2011 and they had been collected in
monthly dataset starting from January 2011 to December 2011. Each monthly
dataset accounts for 1.5 millions of raw observations and Bid pertaining the
demand side are about 400-450 thousand observations, the 20-25% of the to-
tal amount of offers. In each hour of the two years I ranked the bids according
to the merit order (price descending order); I included also the rejected bids
in order to have the estimation of elasticities relative to the prices of de-
mand curve lower than equilibrium price. These latter elasticities represent
in fact the real responsiveness to change in price of purchaser less incline to
buy. Then, I aggregated all inelastic bids (bids with submitted price equal
to 3000), computing in this way the market point of demand corresponding
to the intercept. Finally I derived the remaining downward sloping market
demand curve by horizontal sum of bids characterized by the same price.

At the end of the procedure each monthly Dataset accounts for a sample
size ranging from 15558 observations in February to 23148 observations in
November 2011. For each system of equations we derive the hourly-elasticity
for each day of the month by simply adjusting the coefficient related to the
log-price regressors through the coefficient related to the daily (iteration)
dummy variables. In this way we have derived all beta elasticity for each
hour and each day.

In order to have some statistical summaries we aggregated the later es-
timates in the hourly average elasticity for each month 2. Firstly, it can be
noticed that average elasticities vary within the hours of the day. In 2011
estimates go from a minimum value of from -0.14, recorded in September to
-0.0360 recorded in November Moreover, allowing the variance to differ across
observations of the same equations has led the peak hour elasticities to be,
on average, higher than off-peak ones. The model confirms the Bollino and

2For a comparison with estimates derived using an Homoskedastic model see [12]
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Bigerna’s results. Comparing to the off-peak estimates, peak hour elasticities
show higher variability, going from -0.14 to -0.0484, while the off-peak ones
vary between -0.070 and -0.0359. Secondly, in 2011 elasticities are higher
during the off-peak hours. In the peak hours period, electricity quantities
traded are greater than the average as it is shown by the previous tables and
confirmed by high frequency of congestion.

[Table 1 - Table 2 here]

As regards to zone segmentation, we computed average elasticities within
the group of hours having the same number of zone segmentation after con-
gestion. Estimates shows that during Peak hours higher elasticities has in
fact been recorded when the single market occurred. When the transmis-
sion constraints are violated, elasticity becomes lower and this is particular
evident during the peak hours. High levels of demand causing congestion re-
duces the responsiveness to change in price. Moreover, frequent congestions
during peak hour may suggest that electricity is an essential commodity
whose demand is stiff and whose consumption can not be postponed.

Off-peak estimates instead, do not show a well defined behaviour. During
off-peak hours electricity is allocated essentially for domestic uses and it
means that in this model end-consumers have take the same behaviour with
respect to market segmentation and the risk of congestion.

Elasticities aggregated by PUN percentiles are higher when lower levels
of price have been recorded. Lower price levels mean low quantities traded
and lower income levels. Then, as I said before, consumers with limited
expenditure availability (referring essentially to domestic user) have more
flexible behaviour given changes in price.

[Table 3 - Table 5 here]

The decomposition of average elasticities between peak and off-peak hours
shows that within peak hours, the lower elasticities were recorded when both
single market and maximum segmentation market (four zone division) oc-
curred. The lowest average elasticity was recorded in the presence of maxi-
mum segmentation of national market that gives evidence of higher levels of
demand and income. As we said before, high levels of expenditure availabil-
ity affect demand elasticity reducing the responsiveness to change in price.
Moreover, congestions during the peak hours may suggest that electricity is
an essential commodity whose demand is stiff and whose consumption can
not be postponed.

[Table 6 - Table 10 here]
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5 Conclusions

The models proposed highlights that buyers in the Italian Wholesale Elec-
tricity Market react to change in price since the estimated elasticities are
different from zero.

Moreover, the estimates differ from one another during the day, on the
strenght of the level of electricity loads, the market segmentation structure
and the levels of PUN.

In the Heteroskedastic Multivariate Linear Model, the elasticities recorded
during peak hours are higher than Off-Peak estimates. Moreover buyers man-
tain their higher reactivity to changes in price when there is not congestion
and when PUN records low values.

Further development of the research may be the application of the het-
eroskedastic model to the data referring the 2012. Moreover, also the com-
putational part can be implemented. Heteroskedastic model represents a
novel in the empirical analyses, but the multi-dimension of the inferential
problem made the construction of the algorithm the most challenging task of
my thesis. The heteroskedastic model designs for empirical data a statisti-
cal framework rigorous and detailed. However, posterior simulation requires
the discretional choice of the proposal density and the tuning of its param-
eters, first of all the variance, affecting the behaviour of the chain and the
resulting posterior. Running the procedure with other parameters and al-
ternative functional forms of the candidate generating density could be a
possible development in order to make a comparison between the different
derived estimates.
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6

Tables

Tab. 1:

Hourly Average Elasticity. 2011.

2011
Average Elasticity =
I Quarter IT Quarter ITI Quarter IV Quarter
Peak -0.0778 -0.0677 -0.0882 -0.0591
Off-Peak -0.0533 -0.0562 -0.0556 -0.0558

Tab. 2: Average Elasticity by Quarter. 2011.

19

Hour |Januvary ||February " March || April " May || June " July ||August||September"()ctober||November||D ecember
o -0.0756 -0.0699 -0.086%9 -0.0676 -0.0853 -0.0495 -0.0506 -0.0730 0.1388 -0.0579 -0.0603 -0.0599
10 -0.0764 -0.0696 -0.0864 -0.0679 -0.0855 -0.0492 -0.0509 -0.0731 0.1321 -0.0582 -0.0598 -0.0600
11 -0.0771 -0.0695 -0.0867 -0.0682 -0.0859 -0D.0484 -0.0510 -0D.0769 0.1387 -0.0582 -0.0599 -0.0579
2 -0.0771 -0.0705 -0.0872 -0.0682 -0.0863 -0D.0485 -0.0504 -D.0728 0.1342 -0.0578 -0.0600 -0.0556
13 -0.0769 -0.0707 -0.0877 -0.0677 -0.0868 -0.0490 -0.0505 -0.0754 0.1355 -0.0568 -0.0599 -0.0571
g 14 -0.0761 -0.0701 -0.0876 -0.0686 -0.08B63 -0.0493 -0.0503 -0.0777 -0.1416 -0.0569 -0.0603 -0.0579
2 15 -0.0759 -0.0701 -0.0878 -0.0677 -0.0859 -0D.0498 -0.0505 -D.0758 0.1374 -0.0571 -0.0607 -0.0615
16 -0.0758 -0.0706 -0.0875 -0.0682 -0.0852 -0.0496 -0.0508 -D.0756 0.1398 -0.0578 -0.0602 -0.0588
17 -0.0751 -0.0707 -0.0872 -0.0678 -0.0853 -D.0488 -0.0512 -D.0757 0.1371 -0.0579 -0.0605 -0.0610
18 -0.0751 -0.0706 -0.0868 -0.0676 -0.0859 -0D.0486 -0.0514 -D.0767 0.1369 -0.0578 -0.0611 -0.0612
19 -0.0759 -0.0703 -0.086%9 -0.067Y9 -0.0856 -0.04953 -0.0520 -0.0795 -0.1387 -0.0586 -0.0610 -0.0613
20 -0.0753 -0.0710 -0.0869 -0.068B8 -0.0856 -0.04%39 -0.0516 -0.07B2 @A’BD -0.0582 -0.0611 -0.0581
21 -0.0571 -0.0528 -0.0452 -0.0580 -0.0630 -0.0438 -0.0594 -0.0577 -0.0498 -0.0707 -0.0395 -0.0607
22 -0.0572 -0.0541 -0.0456 -0.0592 -0.0657 -0.0434 -0.0588 -0.0576 -0 0487 -0.0706 -0.0419 -0.0612
2 -0.0573 -0.0536 -0.048% -0.0580 -0.0629 -0.0432 -0.0592 -0.0576 -0.0435 -0.0676 -0.0447 -0.0596
24 -0.0576 -0.0522 -0.045% -0.0613 -0.0662 -0D.0427 -0.0588 -0.0577 -0 0498 -0.0664 -0.0418 -0.0595
” 1 -0.0576 -0.0553 -0.0455 -0.0595 -0.0650 -0.0432 -0.0587 -D.0578 -0.0496 -0.0701 -0.0422 -0.0601
3 2 -0.0581 -0.0557 -0.0470 -0.0603 -0.0679 -0.0439 -0.0588 -0.0578 -0.0503 -0.0675 -0.0460 -0.0599
g 3 -0.0580 -0.0559 -0.0504 -0.0619 -0.0632 -D.0438 -0.0588 -0.0577 -0.0514 -0.0645 -0.05372 -0.0600
- 4 -0.0579 -0.0556 -0.0521 -0.0641 -0.0642 -0.0439 -0.0590 -0.0577 -0 0506 -0.0668 -0.0365 -0.0604
5 -0.0573 -0.0532 -0.0526 | -0.0594 -0.0665 -0.0429 -0.0593 -0.0569 -0.0504 -0.0622 -0.0359 -0.0607
1] -0.0567 -0.0519 -0.0517 -0.0584 -0.0635 -0.0429 -0.0591 -0.0569 -0 0510 -0.0675 -0.0562 -0.0603
7 -0.0570 -0.05351 -0.0500 -0.0582 -0.0666 -0.0435 -0.0593 -0.0569 -0.0509 -0.0689 @359) -0.0609
8 -0.0572 -0.0526 -0.0475  -0.0624 -0.0676 -0D.0441 -0.0591 -D.0565 -0.0513 -0.0675 -0.0366 -0.0611




January February March April May Jun
Percentile
Peak |Off-Peak| Peak ||Off-Peak| Peak |Off-Peak| Peak |Off-Peak| Peak |Off-Peak| Peak |Off-Peak
10 -0.0703 -0.0710 . -0.0858 | -0.0723 || -0.0656 | -0.0438 | -0.0832 | -0D.0742 | -0.0520 | -0.0574
o -0.0738 . -0.0694 | -0.0374 || -0.0861 | -0.0502 || -0.0685 | -0.0664 | -0.0B78 | -0.0587 | -0.0518 | -0.0439
8 -0.0742 | -0.0692 | -0.0708 | -0.0630 | -0.0854 | -0.0406 | -0.070% | -0.0613 | -0.085% | -0.0715 | -0.0457 | -0.0447
7 -0.0762 | -0.0664 | -0.0685 | -0.0508 | -0.0877 | -0.0597 | -0.0685 | -0.0714 (| -0.0883 | -0.0731 | -0.0481 | -0.0447
6 -0.0796 | -0.0560 | -0.0700| -0.0512 | -0.0B62 | -0.0594 | -0.0646 ( -0.0587 || -0.085% | -0.0682 | -0.0485 | -0.0473
5 -0.0761 | -0.0542 | -0.0687 | -0.0558 || -0.08B0 | -0.0299 | -0.0685 | -0.0600 (| -0.0826 | -0.0729% | -0.0514 | -0.0466
4 -0.0763 | -0.0552 | -0.0704 | -0.0522 || -0.0BB7 | -0.0430 | -0.0666 | -0.0566 || -0.0836 | -0.0585 | -0.0456 | -0.0404
3 -0.0718 | -0.0575 | -0.0729 | -0.0565 | -0.0902 | -0.0499 ( -0.0670 ( -0.0607 || -0.0842 | -0.0633 | -0.0486 | -0.0455
2 -0.0716 | -0.0613 | -0.0753 | -0.0458 || -0.08%2 | -0.0535 | -0.071% ( -0.0619 || -0.0812 | -0.0657 | -0.0457 | -0.0403
1 -0.0547 -0.0568 -0.0478 || -0.0713 | -0.05%0 | -0.079% | -0.0570 | -0.0394 | -0.0435
Tab. 3: Monthly Peak Average Elsticity by PUN Percentile. Jan.-Jun.2011
. July Apgust September October November December
Percentile Peak [Off-Peak|| Peak |Off-Peak| Peak (|Off-Peak| Peak |Off-Peak|| Peak |Off-Peak| Peak |Off-Peak
10 -0.0505| -0.0648 |(-0.0840| -0.0480 ||-0.1652| -0.0458 |(-0.0577| -0.0715 |-0.0609| -0.0384 |[-0.0620| -0.0618
o -0.0531| -0.0685 |-0.0840| -0.0612 ||-0.1211| -0.0501 ([-0.0570| -0.0614 |-0.0608| -0.044% |(-0.0600| -0.0620
8 -0.04%0 | -0.0604 (-0.0721| -0.0588 |[-0.1273| -0.0552 (-0.0586| -0.0766 [|-0.0589( -0.0305 (-0.0536| -0.0583
7 -0.0522 | -0.0578 |(-0.0749| -0.0565 ||-0.1157| -0.0483 |[-0.0574| -0.0651 |-0.0608| -0.0470 |[-0.0481| -0.0612
6 -0.0513| -0.0613 (-0.0732| -0.0533 ||-0.0808( -0.0443 (-0.0571| -0.0696 |-0.0588| -0.0412 |[-0.0630| -0.0566
5 -0.0511| -0.0654 |(-0.0736| -0.0563 ||-0.1743| -0.0480 |(-0.0601| -0.0668 |-0.0585| -0.0426 |[-0.0641| -0.0644
4 -0.0494 | -0.0603 (-0.0715| -0.0618 ||-0.1503( -0.0507 (-0.0593| -0.0638 |-0.0621| -0.0385 |[-0.0636| -0.0699
3 -0.0516| -0.0581 (-0.0777| -0.0556 [[-0.1614| -0.0511 (-0.0564| -0.0562 ||-0.0617| -0.0517 (|-0.0633| -0.0663
2 -0.0468 | -0.0605 (-0.0668| -0.0636 |[-0.1293| -0.0564 (-0.0612| -0.0666 ||-0.0632| -0.0434 (|-0.0917| -0.0533
1 -0.0552 | -0.0526 (-0.0692| -0.0599 -0.0541 (-0.0630| -0.0759 ||-0.0640( -0.0259 -0.0608

Tab. 4: Monthly Average Elsticity by PUN Percentile. Jul.-Dec.2011

] Mean Stand. Dev Min. Max.
Percentile
Peak Off-Peak|Peak Off-Peak|Peak Off-Peak|Peak Off-Peak|
1 -0.070 -0.054 0.023 0.028 -0.224 -0.131 -0.010 0.000
2 -0.072 -0.052 0.019 0.027 -0.216 -0.130 -0.010 0.000
3 -0.070 -0.053 0.022 0.025 -0.262 -0.125 -0.012 -0.001
4 -0.068 -0.059 0.021 0.024 -0.217 -0.132 -0.001 -0.002
5 -0.070 -0.055 0.027 0.027 -0.292 -0.126 -0.005 0.000
i) -0.070 -0.054 0.032 0.026 -0.291 -0.127 0.000 0.000
7 -0.073 -0.057 0.037 0.024 -0.252 -0.129 0.000 0.000
8 -0.078 -0.056 0.045 0.024 -0.282 -0.124 -0.001 0.000
0 -0.078 -0.057 0.049 0.024 -0.298 -0.119 -0.001 -0.001
10 -0.084 -0.056 0.060 0.024 -0.309 -0.099 -0.002 0.000
Tab. 5: Average Elsticity by PUN Percentile. 2011
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Zone 2011-Jan.-Jun. 2011-Jul.-Dec.
Average Peak Off-Peak || Average Peak Off-Peak
5 1] 1] 1] 1] 1] 1]
4 -0.062 -0.068 -0.056 -0.061 -0.057 -0.065
3 -0.060 -0.067 -0.053 -0.067 -0.076 -0.058
2 -0.063 -0.069 -0.056 -0.065 -0.071 -0.059
1 -0.062 -0.070 -0.054 -0.062 -0.070 -0.055

Tab. 6: Average Elasticity by Zone Segmentation. 2011.

= January February March April May June

§ Freq. |[Av. Elast, [Freq. ||Av. Elast. ||Freq. [Av. Elast. |[Freq. |Av. Elast. |Freq. |[Av. Elast. ([Freq. |Av. Elast.
5 0 O 0 0 0 H

4 5 -0.077 11 -0.061 4 -0.091 1 -0.065 16 -0.079 17 -0.035
1 21 -0.077 146 -0.061 125 -0.085 110 -0.067 107 -0.084 153 -0.029
2 || 265 -0.075 178 -0.060 226 -0.088 215 -0.068 225 -0.088 205 -0.034
1 7 -0.077 1 -0.059 17 -0.090 34 -0.071 24 -0.081 5 -0.043
Tab. 7: Average Peak Elasticity by Zone Segmentation. Jan.-Jun. 2011.

= July Aungust September October November December

§ Freq. |[Av. Elast. (Freq. |Av. Elast. |Freq. |[Av. Elast. |[Freq. |Av. Elast. |Freq. |[Av. Elast. |Freq. || Av. Elast.
5 H 0 0 0 o 0

4 22 -0.065 0 10 -0.047 7 -0.056 1 -0.061 2 -0.054
3 || 152 -0.060 52 -0.067 221 -0.147 146 -0.060 163 -0.061 137 -0.060
2| 186 -0.062 311 -0.060 124 -0.132 202 -0.056 156 -0.060 202 -0.059
1 2 -0.076 9 -0.088 5 -0.074 17 -0.064 40 -0.059 31 -0.057

Tab. 8: Average Peak Elasticity by Zone Segmentation. Jul.-Dec. 2011.
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2 Januvary February March April May June
~ Freq. | Av. Elast. |Freq. | Av. Elast. |[Freq. [[Av. Elast. |Freq. | Av. Elast. |Freq. ||Av. Elast. [Freq. |[Av. Elast.
L 0 o o 0 o 0
4 7 -0.055 10 -0.048 3 -0.070 g -0.058 15 -0.067 18 -0.040
1| 117 -0.057 73 -0.052 105 -0.053 152 -0.060 162 -0.061 123 -0.035
2| 121 -0.057 135 -0.057 122 -0.042 120 -0.061 165 -0.070 157 -0.051
1| 127 -0.058 118 -0.053 141 -0.050 B0 -0.060 30 -0.061 62 -0.043
Tab. 9: Average Off-Peak Elasticity by Zone Segmentation. Jan.-Jun. 2011.
& July Aungost September October MNovember December
~ Freq. |[Av. Elast. [Freq. ||Av. Elast. ||Freq. [[Av. Elast. |[Freq. |Av. Elast. ||Freq. ||Av. Elast. [[Freq. (|Av Elast.
L 0 o 0 0 o
4 | 25 -0.057 5 -0.079 7 -0.059 7 -0.067 1 -0.079 4 -0.048
3| 193 -0.058 162 -0.057 172 -0.054 93 -0.066 o4 -0.057 &7 -0.052
2| 109 -0.060 128 -0.060 o9 -0.047 155 -0.069 127 -0.060 153 -0.057
1 45 -0.062 7 -0.051 g2 -0.0456 117 -0.067 138 -0.051 148 -0.053
Tab. 10: Average Off-Peak Elasticity by Zone Segmentation. Jul.-Dec. 2011.
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