• 14.10.2025
    Didattica

    Si avvisano gli interessati che la lezione di RAGIONERIA GENERALE E APPLICATA di Prof. Bellucci del 15 Ottobre 2025 si svolgerà come da programma nell'Aula 3 dalle 11:30 alle 13:30 e nell'Aula 6 dalle 13:30-14:30.

  • 14.10.2025
    Didattica

    Si avvisano gli interessati che la lezione della Prof. Schiuma di domani, 15 Ottobre, si svolgerà on line. Link presente su Unistudium.

  • 13.10.2025
    Didattica

    INIZIO LEZIONI - MATHEMATICAL METHODS FOR FINANCE - 15 OTTOBRE ALLE ORE 10:30 - PROF. ANGELINI DANIELE.

  • 08.10.2025
    Segreteria Didattica

    Si avvisano gli interessati, che il ricevimento della porf.ssa Boiti, di mercoledì 15 e di mercoledì 22 ottobre è anticipato, rispettivamente, a lunedì 13 e lunedì 20 ottobre, stessi orari (9-13).

  • 11.07.2025
    Segreteria Didattica

    Si pubblicano le Scadenze per le LAUREE OTTOBRE 2025 - LINK

Maximum Likelihood Estimation for Linear Gaussian Covariance Models

Relatore: Prof. Piotr W. Zwiernik, attualmente visiting presso il Dip di Matematica dell'Università di Genova,
Introduce: Antonio Forcina
mercoledì 15 luglio 2015, ore 16, Aula 101

Riassunto:
We study parameter estimation in linear Gaussian covariance models,
which are p-dimensional Gaussian models with linear constraints on the
covariance matrix. Maximum likelihood estimation for this class of
models leads to a non-convex optimization problem which typically has
many local optima. We prove that the log-likelihood function is
concave over a large region of the cone of positive definite matrices.
Using recent results on the asymptotic distribution of extreme
eigenvalues of the Wishart distribution, we provide sufficient
conditions for any hill climbing method to converge to the global
optimum. Remarkably, our numerical simulations indicate that our
results remain valid for p as small as 2. An important consequence of
this analysis is that for sample sizes n>14p, maximum likelihood
estimation for linear Gaussian covariance models behaves as if it were
a convex optimization problem.
Joint work: Caroline Uhler, Donald Richards